02003nas a2200421 4500000000100000008004100001260001600042653001700058653001000075653002300085653002200108653002200130100001900152700001700171700001700188700001800205700001900223700002200242700001900264700001900283700001500302700001900317700002100336700001700357700002300374700002400397700002200421700002000443700001600463700002100479700002200500700001900522700002000541245008600561856007100647520084900718020001401567 2018 d c2018/11/12/10ageochemistry10aItrax10aX-ray fluorescence10aX-ray radiography10aXRF core scanning1 aMenno Bloemsma1 aIan Croudace1 aStephen Daly1 aRobin Edwards1 aPierre Francus1 aJennifer Galloway1 aBraden Gregory1 aJyh-Jaan Huang1 aAnna Jones1 aMalin Kylander1 aLudvig Löwemark1 aYangbing Luo1 aSuzanne Maclachlan1 aChristian Ohlendorf1 aTimothy Patterson1 aChristof Pearce1 aJörn Profe1 aEduard Reinhardt1 aChristian Stranne1 aRik Tjallingii1 aJonathan Turner00aPractical guidelines and recent advances in the Itrax XRF core-scanning procedure uhttp://www.sciencedirect.com/science/article/pii/S10406182183026113 a
XRF core scanning has evolved to become a standard analytical technique for the rapid assessment of elemental, density and textural variations in a wide range of sediments and other materials, with applications ranging from palaeoceanography, paleoclimatology, geology, and environmental forensics to environmental protection. In general, scanning provides rapid, non-destructive acquisition of elemental and textural variations at sub-millimetre resolution for a wide range of materials. Numerous procedural adaptations have been developed for the growing number of applications, such as analyses of unconsolidated, water-rich sediments, powdered soil samples, or resin bags. Here, practical expertise and guidance from the Itrax community, gained over 15 years, is presented that should provide insights for new and experienced users.
a1040-6182