TY - JOUR
KW - 3022 Marine Geology and Geophysics: Marine sediments: processes and transport
KW - 3045 Marine Geology and Geophysics: Seafloor morphology
KW - geology
KW - and geophysics
KW - 3070 Marine Geology and Geophysics: Submarine landslides
KW - debris flow
KW - northwest Africa
KW - Sahara Slide
KW - slope instability
KW - tsunami
KW - turbidite
AU - Aggeliki Georgiopoulou
AU - Douglas Masson
AU - Russell Wynn
AU - Sebastian Krastel
AB - The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of \~2000 m. High primary productivity in surface waters drives accumulation of thick fine-grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large-scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab-type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of \~900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50\textendash60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.
BT - Geochem. Geophys. Geosyst.
M1 - 7
N2 - The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of \~2000 m. High primary productivity in surface waters drives accumulation of thick fine-grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large-scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab-type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of \~900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50\textendash60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.
PB - AGU
PY - 2010
SN - 1525-2027
EP - Q07014
T2 - Geochem. Geophys. Geosyst.
TI - Sahara Slide: Age, initiation, and processes of a giant submarine slide
UR - http://dx.doi.org/10.1029/2010GC003066
VL - 11
ER -