Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures

TitleIce-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures
Publication TypeJournal Article
Year of Publication2011
AuthorsKilfeather, AA, Cofaigh, CÓ, Lloyd, JM, Dowdeswell, JA, Xu, S, Moreton, SG
JournalGeological Society of America Bulletin
Volume123
Pagination997-1015
Date PublishedMay 1, 2011
Abstract

The timing, nature, and causes of grounded ice-sheet retreat following the Last Glacial Maximum (LGM) in Marguerite Trough, west Antarctic Peninsula, and subsequent early Holocene ice-shelf decay, are presented in this paper. We use sedimentological, foraminiferal, geotechnical, and accelerator mass spectrometer (AMS) radiocarbon data from marine cores from the mid-continental shelf, together with previously published AMS dates, to establish a sedimentological and chronological model.Initial ice-sheet retreat through the outer- and mid-shelf sectors of Marguerite Trough was under way by ca. 14 ka B.P., was rapid, and coincided with the sea-level rise of meltwater pulse 1a. An ice shelf formed during this retreat, and fine-grained, laminated muds reflecting meltwater-derived suspension settling and/or tidal pumping were deposited. During this time the ice sheet remained grounded on the inner shelf.Ice-shelf breakup and retreat of the calving front, from ca. 13.2 to 12.5 ka B.P., was slow (∼100 m a−1) across the outer- and mid-shelf, with calving bay conditions remaining for at least 3.5 ka. We interpret this ice-shelf decay to have been driven by an incursion of Weddell Sea Transitional Water onto the shelf. In contrast, grounding-line and ice-shelf retreat in the inner bay occurred from ca. 9.3 ka B.P. and was driven by Circumpolar Warm Deep Water encroaching onto the continental shelf. At this time the mid-shelf was an open-marine environment characterized by hemipelagic deposition. These findings highlight the importance of oceanographic controls in the breakup of Antarctic Peninsula ice shelves during the Holocene.

URLhttp://gsabulletin.gsapubs.org/content/123/5-6/997.abstract