Record of methane emissions from the West Svalbard continental margin during the last 23,500years revealed by ?13C of benthic foraminifera

TitleRecord of methane emissions from the West Svalbard continental margin during the last 23,500years revealed by ?13C of benthic foraminifera
Publication TypeJournal Article
Year of Publication2014
AuthorsPanieri, G, James, RH, Camerlenghi, A, Westbrook, GK, Consolaro, C, Cacho, I, Cesari, V, Cervera, CSanchez
JournalGlobal and Planetary Change
Pagination151–160
Date PublishedAugust
Keywords?13C, benthic foraminifera, Methane emission, Stable isotope, Vestnesa Ridge, West Svalbard
Abstract

The values of ?13C in benthic foraminifera have been measured in a gas-hydrate-bearing sediment core collected from an area of active methane venting on the Vestnesa Ridge (West Svalbard continental margin) to reconstruct the local history of methane emissions over the past 23,500 years BP. The chronostratigraphic framework of the core has been derived from AMS 14C dates and biostratigraphic analysis. While foraminifera from some intervals have ?13C within the normal marine range (0 to -1?), five intervals are characterised by much lower ?13C, as low as -17.4?. These intervals are interpreted to record the incorporation of 13C-depleted carbon in the presence of methane emissions at the seafloor during biomineralization of the carbonate foraminiferal tests and subsequent secondary mineralization. Methane emission events (MEE) occur from the Last Glacial Maximum (LGM) to the Holocene, with the most prominent one, in terms of ?13C depletion, predating the Bølling-Allerød Interstadial (GI-1 in the Greenland ice core record). The lack of correlation between the values of ?13C and ?18O, however, appears to preclude warming of bottom waters as the principal control on methane release. Rather, it seems likely that methane release is a consequence of episodicity in the supply of gas to the hydrate system and in the processes that enable methane gas to migrate through the hydrate stability field to the seabed, or of other geological processes still under debate.

URLhttp://eprints.soton.ac.uk/368393/
d96b37e25c18f40a